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Abstract. We present a Rayleigh-Schrödinger-Goldstone perturbation formalism for many Fermion sys-
tems. Based on this formalism, variational perturbation scheme which goes beyond the Gaussian approxi-
mation is developed. In order to go beyond the Gaussian approximation, we identify a parent Hamiltonian
which has an effective Gaussian vacuum as a variational solution and carry out further perturbation with
respect to the renormalized interaction using Goldstone’s expansion. Perturbation rules for the ground
state wavefunctional and energy are found, thus, opening a way for general use of the Schrödinger pic-
ture method for many Fermion systems. Useful commuting relations between operators and the Gaussian
wavefunctional are also found, which could reduce the calculational efforts substantially. As examples, we
calculate the first order correction to the Gaussian wavefunctional and the second order correction to the
ground state of an electron gas system with the Yukawa-type interaction.

PACS. 05.30.Fk Fermion systems and electron gas – 71.10.Ca Electron gas, Fermi gas

1 Introduction

Field theories can be constructed from three kinds of
pictures which are called Heisenberg, Interaction and
Schrödinger pictures [1]. Among them, the Heisenberg pic-
ture is known to provide a convenient basis for the study
of dynamics of operators and systematic perturbative im-
provement on physical quantities. On the other hand, the
Schrödinger picture approach focuses on the dynamics of
wavefunction, which allows detailed study on time evo-
lution. However, in this approach, it is known that sys-
tematic improvement on obtained result is rather diffi-
cult. Instead, it has a powerful technique which is called
a variational method which allows nonperturbative access
to problems, so that it could be applied to strongly corre-
lated systems where perturbative approaches break down.

There have been successful applications of the
Schrödinger picture to field theories [2–8] and later on
to nonrelativistic many-particle systems [9–15]. While it
has been proved useful, still the controlable range of trial
wavefunctionals has been found to be narrow and further
improvement from results of a trial wavefunctional de-
mands much endeavor in field theories. Therefore, recent
investigations on the picture have focused on overcoming
its drawbacks towards a more managable theory.

Gaussian trial wavefunctional approach in bose fields
has been widely applied and proven to be an efficient and
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powerful method in the Schrödinger picture [3,8]. Further
improvements beyond the Gaussian approximation have
been investigated mostly in two directions. One is to try it
with non-Gaussian wavefunctionals [16,17], and the other
is to perform appropriate expansions based on Gaussian
trial wavefunctional [18–24].

In Fermi fields, a convenient prescription for operators
was proposed by Floreanini and Jackiw [5]. It was shown
that this approach gives successful results on Gaussian
approximations of Fermi fields as in bose fields. How-
ever, in contrast to the bosonic case [1], no success-
ful Rayleigh-Schrödinger type perturbation formalism for
Fermi fields has been proposed so far, although sev-
eral alternative schemes including functional integrals [25]
and background field methods [8] have been reported us-
ing the Floreanini-Jackiw representation(FJR). Since the
Rayleigh-Schrödinger perturbation formalism is the most
familiar form of perturbation theories and especially suit-
able for the Schödinger picture representation in quan-
tum mechanics, it is rather puzzling that it is not so in
field theories. Indeed, the Rayleigh-Schrödinger pertur-
bation scheme for bose fields was formulated early [1].
Also, recently, it has been shown to be versatile enough to
yield higher order terms which are not attainable by other
methods [20]. However, so far there exist no such parallel
formalism for Fermi fields.

In this paper, we present a successful perturbation
formalism for fermionic many-body systems combining
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the Rayleigh-Schrödinger perturbation with Goldstone’s
(RSG) expansion. The scheme will be used to formulate
a variational perturbation scheme, which provides a sys-
tematic improvement beyond the Gaussian approxima-
tion. In order to make the presentation compact, we di-
rectly formulate a RSG perturbation scheme based on the
variational Gaussian wavefunctionals. The formalism is
trivially reduced to the conventional perturbation scheme
by using a true Gaussian vacuum instead of an effective
Gaussian vacuum. This point will be made clear once the
formalism is given. It will be shown that the FJR provides
surprisingly simple expressions for fermion wavefunction-
als. As examples, we calculate the first order correction to
the Gaussian wavefunctional and the second order energy
of an electron gas with the Yukawa-type interaction.

2 Floreanini-Jackiw representation

The action of Fermi field operators on Hilbert space can be
represented by product or derivatives of Grassmann vari-
ables in the Grassmann function space. Then, Schrödinger
equations are transformed into functional differential
equations [1]. Among many possible representations pre-
serving the anticommuting relations of Fermi field opera-
tors, the simplest one is generated from the fermion coher-
ent states which are defined as eigenstates of annihilation
operators [26]. In this representation, annihilation opera-
tors {ai} are described by Grassmann variables {u∗

i }, and
creation opeators {a†

i}, by Grassmann derivatives { ∂
∂u∗

i
}.

A representation without a complex conjugate notation ∗
is also possible and has been used by Duncan et al. [4,9].
However, we find that the representation proposed by
Floreanini and Jackiw is more convenient to formulate the
present theory.

In the FJR, the creation and annihilation operators
are given as follows [5];

a†
i =

1√
2

(
u∗

i +
∂

∂ui

)
, ai =

1√
2

(
ui +

∂

∂u∗
i

)
, (1)

where ui and u∗
i are Grassmann variables. In the FJR for

free Fermi systems, vacuums are described by Gaussian
wavefunctionals just as for bosonic systems. However, the
norms between basis states for the FJR are not orthogo-
nal since 〈u′u′∗|uu∗〉 = eu′

i
∗ui−u∗

i u′
i . It can be proven by

the fact that four kinds of states relative to a quantum
number i are possible. They are represented by 1, u∗

i , ui

and u∗
i ui. Actually, only two kinds of physical states for i

exist. One is the occupied state by a fermion and the other
unoccupied. Thus, the FJR is a reducible representation
and only a subspace of the total Grassmann functional
space can be used to describe physically well-defined wave-
functionals. The subspace can be constructed only after a
physical vacuum wavefunctional is chosen. The dual space
wavefunctional Ψ̄ for the wavefunctional Ψ is defined as

Ψ̄ =
∫

D[u′u′∗]Ψeu′
i
∗ui−u∗

i u′
i , (2)

where the norm is calculated by 〈Ψ |Ψ〉 =
∫

D[uu∗]Ψ̄Ψ .
It can be easily shown that the free fermion vacuum is
described by Gaussian wavefunctional [5] as

ΨG = eGiju∗
i uj , (3)

Ψ̄G = DetG†eḠiju∗
i uj , (4)

where Ḡ = G†−1 and we find the dual wavefunctional is
also Gaussian. Gaussian expectation values of some nor-
mal ordered operators are calculated as

〈ΨG| : O(a†, a) : |ΨG〉
〈ΨG|ΨG〉 =

: O
(

1√
2

∂

∂Jb

(
I + Ḡ

)
bi

,
1√
2
(I + G)ja

∂

∂J∗
a

)

: e(G+Ḡ)−1
ij J∗

i Jj |J,J∗=0, (5)

where I is an identity matrix and J, J∗ are source fields
which are inserted into the Gaussian wavefunctional as
eGiju∗

i uj+J∗
i ui−u∗

i Ji during the calculation. It allows that
the Grassmann integrals are represented by Grassmann
derivatives of source fields.

For the free field Hamiltonian, H0 = hija
†
iaj , the func-

tional Schrödinger equation in the FJR is

1
2
hij

(
u∗

i +
∂

∂ui

) (
uj +

∂

∂u∗
j

)
Ψ = E0Ψ. (6)

This equation contains second order derivatives and a
quadratic term which are similar to the harmonic oscil-
lator problem. Thus, we expect the Gaussian wavefunc-
tional, equation (3), as a vacuum. In order for equa-
tion (3) to be an eigenfunctional with an eigenvalue E0 =
1
2Trh(I+G) in equation (6), G should satisfy the following
condition;

(I − G)h(I + G) = 0. (7)

Equation (7) has trivial and non-trivial solutions. Trivial
solutions are G = ±I and non-trivial ones, G = ± h√

h2 .
Here, we note that the number of particles N is given by
N = 1

2Tr(I + G). Therefore, G can be expressed as G =
− h−µI√

(h−µI)2
, where µ is a chemical potential. Diagonalized,

diagonal elements of G become 1 (−1) below (above) µ. In
the case of free Dirac fields, µ is zero and all the negative
energy states are fully filled in the Dirac vacuum.

3 Gaussian approximation and the state
wavefunctionals

When interactions between fermions exist, exact eigen-
functionals are different from the above Gaussian. Varia-
tional method or perturbation theory is applied in order
to approximate true eigenfunctionals. Although the vari-
ational method depends largely on intuition in contrast
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to the systematic perturbative approach, it could provide
excellent results if trial states are chosen carefully.

In the Gaussian approximation, Gaussian wavefunc-
tional with variational parameters is used as a trial func-
tional. We now consider the case of interacting fermion
system where the Hamiltonian has a general form,

H = hija
†
iaj + vijkla

†
ia

†
jakal. (8)

Trial wavefunctional is chosen to be

ΨG = eGiju∗
i uj , (9)

where G is a variational parameter matrix. Then, the en-
ergy expectation value is readily calculated with the aid
of equation (5)

E =
〈ΨG|H |ΨG〉
〈ΨG|ΨG〉 =

1
2
(h + Σ)ijΩji − 1

4
ΣijΩji, (10)

where Σij = (vkijl − vikjl)Ωlk and Ω = (I + G)(G +
Ḡ)−1(I + Ḡ). Minimization of the energy under a fixed
number of particles is achieved through the relation,

∂
∂Ḡij

[
E − µ(1

2TrΩ − N)
]

= 0, where µ, the chemical po-
tential, is introduced as a Lagrange’s multiplier. Thus, the
solution G should satisfy the following condition;

(I − G) (h + Σ − µI) (I + G) = 0. (11)

The equivalent condition for Ḡ is obtained by minimizing
with respect to G, and is given by (I+Ḡ) (h + Σ − µI) (I−
Ḡ) = 0 which provides the same G as in equation (11). As
in equation (7), the nontrivial solution G of equation (11)
is given by

G = − h + Σ − µI√
(h + Σ − µI)2

. (12)

With this solution, the ground state energy E0 is given
as E0 = 1

2Tr(h + Σ)(I + G). The parent Hamiltonian H̃0

which has the above Gaussian vacuum is easily found to be
H̃0 = (h + Σ)ija

†
iaj . In order to obtain excitations based

on the Gaussian wavefunctional, we should have a unitary
matrix U which diagonalizes G as UGU † = Ĩ, where Ĩ is
a diagonal matrix with elements of +1(−1) below (above)
the Fermi level µ. Thus, G can be rewritten as follows;

G =
(

G1 G2

G†
2 G4

)
=

(
U †

1 U †
3

U †
2 U †

4

) (−I 0
0 I

) (
U1 U2

U3 U4

)
. (13)

Therefore, we obtain an expression for U ,

U =
1√
2

( √
I − G1 , − 1√

I−G1
G2

1√
I+G4

G†
2 ,

√
I + G4

)
. (14)

The Gaussian wavefunctional is diagonalized by the new
Grassmann variables ũi = Uijuj and ũ∗

i = u∗
jU

†
ji. We use

capital (small) letters above(below) the Fermi see, so that

ΨG = eGiju∗
i uj = eũ∗

aũa−ũ∗
AũA (a < kF , A > kF ). (15)

We define new creation and annihilation operators as
follows;

ã†
i =

1√
2

(
ũ∗

i +
∂

∂ũi

)
, ãi =

1√
2

(
ũi +

∂

∂ũ∗
i

)
. (16)

Excited wavefunctionals and their duals are obtained by
these operations to the Gaussian as

Ψexcited = ũ∗
A1

· · · ũ∗
An

ũa1 · · · ũaneGiju∗
i uj , (17)

Ψ̄excited = ũ∗
an

· · · ũ∗
a1

ũAn · · · ũA1e
Giju∗

i uj , (18)

which has an excitation energy of ε̃A1 + · · · + ε̃An −
(ε̃a1 + · · ·+ ε̃an) where ε̃i is the ith matrix element of
U(h + Σ)U †. We note here that any physical wavefunc-
tional in the FJR could be represented by multiplying only
some combinations of ũ∗

A and ũa to the Gaussian, while
in other representations, wavefunctionals should also con-
tain Grassmann derivatives for describing hole states and,
thus, are quite complicated in general. An important as-
pect of the present result is that equations (17) and (18)
have same structures to those in bose systems [1].

4 Rayleigh-Schrödinger-Goldstone
perturbation formalism beyond the Gaussian
approximation

In order to go beyond the Gaussian approximation by a
perturbative method based on the parent Hamiltonian H̃0,
Hamiltonian is rearranged as

H = H̃0 +
(
H − H̃0

)

= (h + Σ)ija
†
iaj +

(
Vijkla

†
ia

†
jakal − Σija

†
iaj

)

=
(
h̃+Σ̃

)
ij

ã†
i ãj+

(
Ṽijkl ã

†
i ã

†
j ãkãl−Σ̃ijã

†
i ãj

)
, (19)

where h̃ = UhU †, Σ̃ = UΣU † and Ṽijkl =
UilUjmVlmpqU

†
pkU †

ql. Here, we note that the whole for-
malism simply reduces to the conventional perturbation
if Σ is set to zero. In the previous section, we have al-
ready obtained whole spectrums of eigenvalues and eigen-
functionals of the parent Hamiltonian H̃0. Therefore, the
Rayleigh-Schrödinger perturbation procedure [1] can be
readily adopted for improving the Gaussian approxima-
tion. However, in order to carry out the calculation, it
is necessary to have a general rule for combination of
Grassmann operations which is similar to Wick’s theo-
rem of the Green function approach. In the following, we
show that another perturbative approach in the time inde-
pendent formulation, namely Goldstone’s expansion [27],
becomes an extremely useful tool in the present approach.
Since final results from Goldstone’s expansion are same as
from the Rayleigh-Schrödinger scheme order by order, we
follow the Goldstone’s approach to obtain the expressions
for the Rayleigh-Schrödinger perturbation.
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Goldstone’s expansion is as follows. If H = H0 + H1,
H0|Φ0〉 = E0|Φ0〉 and H |Ψ0〉 = (E0 + ∆E)|Ψ0〉, then

|Ψ0〉 =
∑

n

′
(

1
E0 − H0

H1

)n

|Φ0〉L, (20)

∆E =
∑

n

′〈Φ0|H1

(
1

E0 − H0
H1

)n

|Φ0〉C , (21)

where |Ψ0〉 is normalized as 〈Φ0|Ψ0〉 = 1. The prime in
summation represents exclusion of terms with zero de-
nominators and subscripts L and C represent linked and
connected diagrams respectively. The connected has the
same meaning as in other many-particle theories. How-
ever, the linked diagrams in the Goldstone’s usage are
such that even when some diagrams have unconnected
parts, if unconnected parts all have external lines, then,
the diagrams are treated linked.

Let’s expand the exact ground state wavefunctional
Ψ in terms of the renormalized interaction, H − H̃0. It
gives Ψ =

∑
n Ψn, where Ψ0 = ΨG = eGiju∗

i uj . Then, the
nth order wavefunctional is given by

Ψn =
∑ ′

(
1

E0 − H̃0

(
H − H̃0

))n

L

eGiju∗
i uj , (22)

where
∫

D[u∗u]Ψ̄GΨ =
∫

D[u∗u]Ψ̄GΨG is satisfied.
In order to represent explicitly the Grassmann wave-

functional, we use the following useful relations. When
capital (small) letters are defined for states above(below)
the Fermi see, that is, A, B, · · · > kF and a, b, · · · < kF ,
we arrive at simple commuting relations as follows,

ã†
AΨG = ΨG

√
2ũ∗

A,

ãAΨG = ΨG
1√
2

∂

∂ũ∗
A

,

ã†
aΨG = ΨG

1√
2

∂

∂ũa
,

ãaΨG = ΨG

√
2ũa. (23)

These commuting relations will be shown to reduce calcu-
lational efforts substantially in the FJR. We further define
ī and i for notational simplicity as

ã†
iΨG = ΨGī,

ãiΨG = ΨGi, (24)

where explicit forms of ī and i in the right-hand side are
defined through equation (23) according to their position
in the Fermi see. Then, we obtain

Ψn =
∑ ′

eGiju∗
i uj

×
(

1
E0 − H̃0

(
Ṽijkl (̄ij̄kl) − Σ̃ij (̄ij)

))n

L

. (25)

The right-hand side above consists of combinations of
Grassmann variables and Grassmann derivatives. We can

easily see that if there is no ui (u∗
i ) on the right-hand side

of ∂
∂ui

( ∂
∂u∗

i
), it should be zero. Contraction is defined as

a Grassmann derivative result which is expressed by

īj = ∂
∂ui

ujΘ(kF − i) = δijΘ(kF − i), (26)

ij̄ = ∂
∂u∗

i
u∗

jΘ(i − kF ) = δijΘ(i − kF ). (27)

Self-contractions of bare interaction, Ṽijkl (̄ij̄kl) are can-
celed out by Σ̃ij (̄ij) because

Σ̃ij (̄ij) =
(
V̄kijl − V̄ikjl

) (
UΩU †)

lk
(̄ij)

= 2
(
V̄kijl−V̄ikjl

)
δlk (Θ(kF −l)−Θ(l−kF )) (̄ij) .

Therefore, the interaction term can be simply expressed as

Ṽijkl (̄ij̄kl) − Σ̃ij (̄ij) ≡ Ṽijkl (̄ij̄kl)′ , (28)

where the prime means that contractions should be per-
formed with elements outside (̄ij̄kl). With this prime no-
tation, the wavefunctional is expressed as

Ψn =

[
eGiju∗

i uj

∑ ′ −Ṽi1j1k1l1

δE1

−Ṽi2j2k2l2

δE2
· · · −Ṽinjnknln

δEn

]

×
[(

(̄i1j̄1k1l1)
′ (̄i2j̄2k2l2)

′ · · · (̄inj̄nknln)′
)

L

]
, (29)

where δEµ ≡ ∑n
a=µ(ε̃ia + ε̃ja − ε̃ka − ε̃la) means excitation

energy. Each index in the second square bracket in equa-
tion (29) could be a Grassmann variable or a Grassmann
derivative. Therefore, in order to be non-zero, all deriva-
tives should be contracted out with corresponding vari-
ables and finally remaining elements should be Grassmann
variables only. They are summarized as follows: (i) The
following steps are repeated for each m = [0, 2n − 1].
(ii) A possible set of m pairs of bar and non-bar indices
is selected. Self-contractions are forbidden and isolated
parts fully connected by contractions are also excluded.
(iii) Each contraction has the value given by equation (26)
or equation (27). If odd numbers of permutations are
performed for contraction, (−1) is multiplied. Remain-
ing indices without contraction are converted by ī →√

2u∗
i Θ(i − kF ) and i → √

2uiΘ(kF − i). (iv) All other
possible m contractions are performed. Then, Ψn is calcu-
lated by multiplying the first square bracket term of equa-
tion (29) to each contraction term and finally by summing
out all indices.

The corresponding nth order energy En (∆E =
∑

n En)
is calculated as

En =

∫
D[u∗u]Ψ̄G

(
H − H̃0

)
Ψn∫

D[u∗u]Ψ̄GΨG

=
∑ ′

Ṽi1j1k1l1

−Ṽi2j2k2l2

δE2
· · · −Ṽinjnknln

δEn

×
(
(̄i1j̄1k1l1)

′ (̄i2j̄2k2l2)
′ · · · (̄inj̄nknln)′

)
C

,(30)

where subscript C means that we should perform fully
connected contractions.
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As well as energy values, Gaussian expectation values
of any operators like O(ã†

i , ãj , ···) are also simply expressed
in the FJR as follows,

〈O〉 =

∫
D[u∗u]eGiju∗

i ujO
(
ã†

i , ãj, · · ·
)

eGiju∗
i uj

∫
D[u∗u]e2Giju∗

i uj

=
∫

D[u∗u]e2Giju∗
i ujO (̄i, j, · · ·)∫

D[u∗u]e2Giju∗
i uj

= O (̄i, j, · · ·) |u∗,u=0, (31)

where G should be the variational solution, equation (12),
and the notational abbreviations, equations (16) and (24)
are also used. The third line of equation (31) is equivalent
to the full contractions allowing unconnected ones.

As examples, we calculate the first order wavefunc-
tional Ψ1 and the second order energy E2. If we use capital
(small) letters above(below) the Fermi see in the correc-
tion parts, they are represented as

Ψ1 =−4eGiju∗
i uj

∑
A,B,a,b

ṼABab

ε̃A+ ε̃B− ε̃a− ε̃b
ũ∗

Aũ∗
Bũaũb, (32)

E1 = 0, (33)

E2 = −2
ṼabAB

(
ṼABab − ṼBAab

)
ε̃A + ε̃B − ε̃a − ε̃b

. (34)

Here, we note that E1 is always zero and Ψ1 has no terms
like ũ∗

Aũa because self-contraction is forbidden.
In the case of electron gas, the quantum numbers are

usual wavevector k and spin σ and the interaction has a
form,

Vijkl → Vk1σ1,k2σ2,k3σ3,k4σ4

=
1
2
v(|k4 − k1|)δk1+k2,k3+k4δσ1σ4δσ2σ3 . (35)

For a homogeneous case, the Gaussian variational solu-
tion G of equation (12) is already diagonalized by kσ
representation. Therefore, we can use the Grassmann
variables u∗

kσ, ukσ as basis states instead of ũ∗
kσ, ũkσ.

The energy component of parent Hamiltonian H̃0 is calcu-
lated as ε̃kσ = (h+Σ)kσ,kσ = ε0k −

∑
q v(q)nk+qσ where ε0k

is the free electron energy band and nkσ is the Fermi dis-
tribution function at zero temperature. Thus, we finally
have

Ψ1 = −2eGkσ,k′σ′u∗
kσuk′σ′

×
∑

kk′qσσ′

v(q)
ε̃k′+q + ε̃k−q − ε̃k − ε̃k′

u∗
k′+qσu∗

k−qσ′ukσ′uk′σ,

(36)

E2 = −
∑
kk′q

v(q)2nknk′(1 − nk′+q)(1 − nk−q)
ε̃k′+q + ε̃k−q − ε̃k − ε̃k′

+
∑
kk′q

v(q)v(q′)nk+q+q′ (1 − nk+q′ )nk(1 − nk+q)
ε̃k+q + ε̃k+q′ − ε̃k − ε̃k+q+q′

. (37)

ε

Fig. 1. The second order energy correction (Eq. (36)) per par-
ticle for the electron gas with the Yukawa-type interaction.
(α = 1.1, γ = 1.1 and λ = 0.1); filled circles are from the
present variational perturbation and open circles from the con-
ventional perturbation.

The first order wavefunctional has a very simple form and
higher order ones are also expected to have such simple
forms in this variational FJR. We find that the above sec-
ond order ground state energy is same as the zero tem-
perature limit of the variational perturbation theory [25]
previously obtained from a functional integral representa-
tion, because Gaussian approximations of both represen-
tations employed same variational basis. For a numerical
energy value, we modeled an electron gas with a bare ki-
netic energy ε0k = �

2k2

2meα and a Yukawa-type interaction
v(q) = 4πγe2/V (q2 + ( λ

a0
)2) where me and e are the bare

electron mass and the charge, and V and a0 are the system
volume and the Bohr’s radius respectively. α, γ, and λ are
parameters to modulate the mass, charge and interaction
range. In Figure 1, we plot the second order contribution
to the ground state energy as a function of rs, which is
the average distance ratio between electrons defined by
V = 4

3π(rsa0)3N . We find the second order contribution
is much reduced in the present variationl procedure than
the conventional one which usually gives exceedingly neg-
ative result. We are emphasizing that the present formu-
lation should provide a more rapidly convergent ground
state energy than in a conventional perturbation result
order by order, which is because higher orders are already
contained in basis states by the variational calculation.
Therefore, each perturbative correction term is expected
to have smaller absolute value than corresponding con-
ventional perturbative result as in Figure 1. More rapid
convergence will result in a closer value to the true energy.

5 Summary

We have presented a Rayleigh-Schrödinger-Goldstone per-
turbation formalism using the Floreanini-Jackiw represen-
tation on fermion systems. With the aid of Goldstone’s
expansion, formal expressions for the ground state wave-
functional and the corresponding energy are obtained in
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terms of a renormalized interaction. An important aspect
of the present result is that the excited state wavefunction-
als have the same simple structure as in the Bose systems,
thus allowing straightforward perturbation calculations
for higher order terms for many Fermion systems. It is
also shown that it can be conveniently used for both stan-
dard perturbation and variational perturbation schemes.
Useful commuting relations between creation and annihi-
lation operators with the Gaussian wavefunctional have
been found. As examples, we have calculated the first or-
der wavefunctional and the second order ground state en-
ergy of electron gas with Yukawa-type interaction.
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